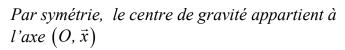
PSI – T.D. de SII

CI3: modéliser, analyser et expérimenter les comportements, dynamique et énergétique d'une chaîne d'énergie d'un système.

RECHERCHE DE BARYCENTRES **EXERCICE 1**

Déterminer la position du centre d'inertie de la plaque Q 1. rectangulaire découpée ci-dessous par la définition du CdG. (Eventuellement ultérieurement par Guldin)

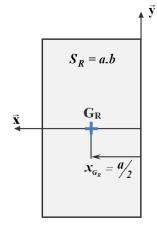
$$m \cdot \overrightarrow{OG} = \sum_{i=1}^{n} m_i \cdot \overrightarrow{OG}_i$$
 On donne $x_{G_{1/2D}} = 4r/3\pi$

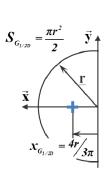


$$S \cdot x_G = S_R \cdot x_{G_R} - S_{1/2D} \cdot x_{G_{1/2D}}$$

$$\left(a \cdot b - \frac{\pi r^2}{2}\right) \cdot x_G = a \cdot b \cdot \frac{a}{2} - \frac{\pi r^2}{2} \cdot \frac{4r}{3\pi}$$

$$\Rightarrow x_G = \frac{3 \cdot a^2 b - 4r^3}{6 \cdot ab - 3\pi r^2}$$





a

Courige

Q 2. Déterminer la position du centre d'inertie de la plaque triangulaire découpée ci-dessous par la définition du CdG. (Eventuellement ultérieurement par Guldin).

$$m \cdot \overrightarrow{OG} = \sum_{i=1}^{n} m_i \cdot \overrightarrow{OG}_i$$

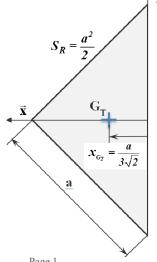
Par symétrie, le centre de gravité appartient à l'axe (O, \vec{x})

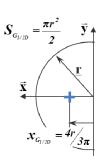
$$S \cdot x_{G} = S_{T} \cdot x_{G_{T}} - S_{1/2D} \cdot x_{G_{1/2D}}$$

$$\left(\frac{a^{2}}{2} - \frac{\pi r^{2}}{2}\right) \cdot x_{G} = \frac{a^{2}}{2} \cdot \frac{a}{3\sqrt{2}} - \frac{\pi r^{2}}{2} \cdot \frac{4r}{3\pi}$$

$$\Rightarrow x_G = \frac{a^3 - 4\sqrt{2}r^3}{3\sqrt{2}(a^2 - \pi r^2)}$$

Ou encore
$$x_G = \frac{a^3 \sqrt{2} - 8r^3}{6 \cdot (a^2 - \pi r^2)}$$





EXERCICE 2 APPLICATIONS DU THEOREME DE GULDIN

2-1 Tore

- Déterminer la surface et le volume (V) d'un tore de rayons r et R.

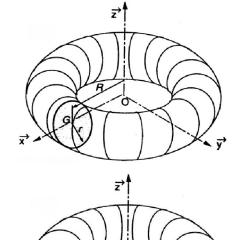
Surface du tore :

D'après Guldin
$$S = X_{G_L} \cdot \theta \cdot L$$
.

$$S = R \cdot 2\pi \cdot 2\pi r \quad \Rightarrow \quad S = 4\pi^2 \cdot R \cdot r$$

D'après Guldin
$$V = X_{G_s} \cdot \theta \cdot S$$

$$V = R \cdot 2\pi \cdot \pi \cdot r^2 \implies V = 2\pi^2 \cdot r^2 \cdot R$$



2-2 Sphère

- Déterminer la position du centre d'inertie du demi-cercle (C)

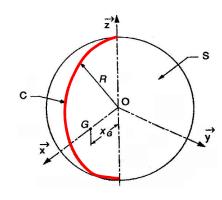
On connaît l'expression de la surface de la sphère : $S = 4 \cdot \pi \cdot R^2$

On cherche la position du centre de gravité de la ligne qui par rotation engendre la surface de la sphère :

D'après Guldin
$$S = X_{G_1} \cdot \theta \cdot L$$

Avec
$$L = \pi \cdot R$$
 et $\theta = 2 \cdot \pi$

$$\Rightarrow X_{G_L} = \frac{4 \cdot \pi \cdot R^2}{2\pi \cdot \pi R} \Rightarrow X_{G_L} = \frac{2 \cdot R}{\pi}$$



2-3 *Boule*

- Déterminer la position du centre d'inertie du demi disque (S)

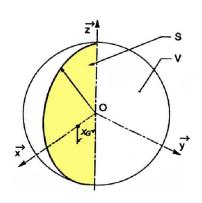
On connaît l'expression du volume de la sphère : $S = \frac{4}{3} \cdot \pi \cdot R^3$

On cherche la position du centre de gravité de la surface qui par rotation engendre le volume de la sphère :

D'après Guldin
$$V = X_{G_s} \cdot \theta \cdot S$$

$$Avec S = \frac{\pi \cdot R^2}{2} et \theta = 2 \cdot \pi$$

$$\Rightarrow X_{G_S} = \frac{4 \cdot \pi \cdot R^3}{3 \cdot 2\pi \cdot \frac{\pi \cdot R^2}{2}} \Rightarrow X_{G_S} = \frac{4 \cdot R}{3 \cdot \pi}$$



RECHERCHE DE MATRICES D'INERTIES EXERCICE 3

3-1 Inertie d'un solide extrudé par rapport à son plan de symétrie

On donne la méthode pour calculer le moment d'inertie du solide extrudé ci-contre par rapport au plan $(G, \vec{x}, \vec{y}).$

Recherche du moment d'inertie par rapport au plan (x, G, y).

Le moment d'inertie s'écrit : $I_{xGy} = \int_{s} z^{2} \cdot dm$

On choisit pour volume de matière élémentaire, une plaque de section S et d'épaisseur dz.

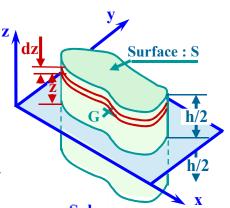
Il s'écrit : $dm = \rho \cdot dv = \rho \cdot S \cdot dz$

$$I_{xGy} = \rho \cdot S \cdot \int_s z^2 \cdot dz = \rho \cdot S \cdot \left[\frac{z^3}{3} \right]_{-h/2}^{h/2} \implies I_{xGy} = \rho \cdot S \cdot \frac{h^3}{12}$$

On fait intervenir la masse dans l'expression de I_{xGv} avec

$$I_{xGy} = \cancel{h} \cdot \cancel{h} \cdot \frac{h^3}{12} \cdot \frac{m}{\cancel{h} \cdot \cancel{h} \cdot h} \qquad \Rightarrow \boxed{I_{xGy} = m \cdot \frac{h^2}{12}}$$

$$\Rightarrow \boxed{I_{xGy} = m \cdot \frac{h^2}{12}}$$



3-2 Matrice d'inertie d'un cylindre :

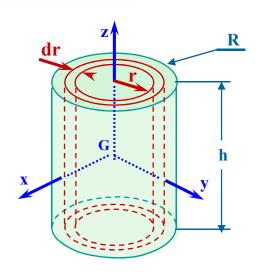
- On donne la résolution permettant la détermination du moment d'inertie C du cylindre de

rayon R et de hauteur h par rapport à l'axe (\overrightarrow{Gz}) .

On considère un tube de diamètre r et d'épaisseur dr Ce volume de matière élémentaire a pour masse : $dm \, = \, \rho \cdot dv \, = \, \, \rho \cdot dS \cdot \theta \cdot X_{G_s} \, = \, \, \rho \cdot h \cdot dr \cdot 2\pi \cdot r$

Le moment d'inertie I_{GZ} s'écrit :

$$C = \int_{s} \mathbf{r}^{2} \cdot d\mathbf{m} = \rho \cdot 2\pi \cdot \mathbf{h} \cdot \int_{r=0}^{r=R} \mathbf{r}^{3} \cdot d\mathbf{r}$$
$$= \rho \cdot 2\pi \cdot \mathbf{h} \cdot \left[\frac{\mathbf{r}^{4}}{4} \right]_{r=0}^{r=R} = \rho \cdot 2\pi \cdot \mathbf{h} \cdot \frac{\mathbf{R}^{4}}{4}$$



On fait intervenir ma masse dans l'expression de \mathbf{I}_{GZ} avec $\,m = \rho \cdot \pi \cdot R^2 \cdot h\,$

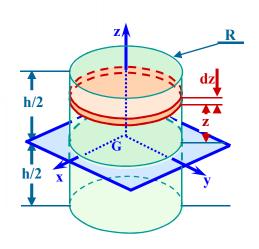
d'où
$$C = \sqrt{2\pi \cdot 1} \cdot \frac{R^4}{4} \cdot \frac{m}{\sqrt{2\pi \cdot 1} \cdot R^2 \cdot 1} \Rightarrow \boxed{C = \frac{m \cdot R^2}{2}}$$

- Déterminer le moment d'inertie A par rapport à l'axe (\overrightarrow{Gx}) .

$$C = I_{Gz} = \frac{m \cdot R^2}{2}$$

On détermine ensuite
$$I_{Gx} = \int_s (y^2 + z^2) \cdot dm$$

$$I_{Gz} = \int_s (x^2 + y^2) \cdot dm$$



Or par raison de symétrie de révolution, $\int_s x^2 \cdot dm = \int_s y^2 \cdot dm = \frac{I_{Gz}}{2} = \frac{m \cdot R^2}{4}$

d'où
$$I_{Gx} = \int_{s} (y^{2} + z^{2}) \cdot dm = \int_{s} y^{2} \cdot dm + \int_{s} z^{2} \cdot dm = \frac{m \cdot R^{2}}{4} + \frac{m \cdot h^{2}}{12}$$

On s'appuie sur le résultat obtenu pour le solide extrudé:

$$I_{xGy} = m \cdot \frac{h^2}{12}$$

$$I_{xGy} = \mathbf{m} \cdot \frac{\mathbf{h}^2}{12}$$

$$I_{Gx} = \mathbf{m} \cdot \left(\frac{\mathbf{R}^2}{4} + \frac{\mathbf{h}^2}{12}\right)$$

- Exprimer la matrice d'inertie au centre d'inertie G dans la base $(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$.

On remarque que les trois plan du repère sont plan de symétrie. Les produits d'inertie sont donc nuls.

$$\overline{\overline{\mathbb{I}(G,S)}} = \begin{pmatrix} m \cdot \left(\frac{R^2}{4} + \frac{h^2}{12}\right) & 0 & 0 \\ 0 & m \cdot \left(\frac{R^2}{4} + \frac{h^2}{12}\right) & 0 \\ 0 & 0 & \frac{m \cdot R^2}{2} \end{pmatrix}_{B}$$

3-3 Matrice d'inertie du parallélépipède rectangle

Recherche des moments d'inertie par rapport aux trois plans parallèles aux axes du repère et

Pour le plan (x, G, y), on extrude un rectangle $a \times b$ entre -c/2 et +c/2.

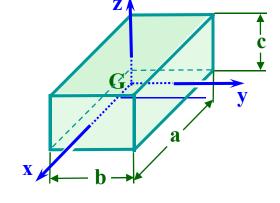
on obtient:
$$I_{xGy} = \frac{m \cdot c^2}{12}$$

Pour le plan (y, G, z), on extrude un rectangle de section b×c entre -a/2 et +a/2.

On obtient :
$$I_{yGz} = \frac{m \cdot a^2}{12}$$

Pour le plan (z, G, x), on extrude un rectangle de section $c \times a$ entre -b/2 et +b/2.

on obtient:
$$I_{zGx} = \frac{m \cdot b^2}{12}$$



Recherche des moments d'inertie par rapport aux trois axes passant par G.

Pour l'axe (G, x),

$$\int_{\mathfrak{s}} (y^2 + z^2) \cdot dm = \int_{\mathfrak{s}} y^2 \cdot dm + \int_{\mathfrak{s}} z^2 \cdot dm$$

$$\int_{s} (y^{2} + z^{2}) \cdot dm = \int_{s} y^{2} \cdot dm + \int_{s} z^{2} \cdot dm$$
On obtient:
$$I_{Gx} = I_{zGx} + I_{xGy} \Rightarrow I_{Gx} = A = m \cdot \frac{b^{2} + c^{2}}{12}$$

Pour l'axe (G, v),

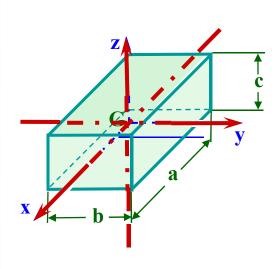
$$\int_{s} (z^{2} + x^{2}) \cdot dm = \int_{s} z^{2} \cdot dm + \int_{s} x^{2} \cdot dm$$

On obtient:
$$I_{Gy} = I_{xGy} + I_{yGz} \Rightarrow \boxed{I_{Gy} = B = m \cdot \frac{c^2 + a^2}{12}}$$

Pour l'axe (G, z),

$$I_{Gz} = \int_s (x^2 + y^2) \cdot dm = \int_s x^2 \cdot dm + \int_s y^2 \cdot dm$$

On obtient :
$$I_{Gz} = I_{yGz} + I_{zGx} \Rightarrow \boxed{I_{Gz} = C = m \cdot \frac{a^2 + b^2}{12}}$$



On en déduit la diagonale de la matrice d'inertie

Puis les produits d'inertie :

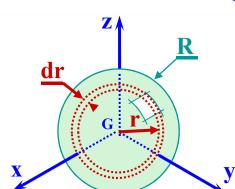
On remarque que les trois plan du repère sont plan de symétrie. Les produits d'inertie sont donc nuls.

$$\overline{\overline{\mathbb{I}(G,S)}} = \begin{pmatrix}
m \cdot \frac{b^2 + c^2}{12} & 0 & 0 \\
0 & m \cdot \frac{c^2 + a^2}{12} & 0 \\
0 & 0 & m \cdot \frac{a^2 + b^2}{12}
\end{pmatrix}$$
Be

3-4 Inertie d'une sphère.

On donne le moment d'inertie $I_G(S) = \frac{3 \cdot m \cdot R^2}{5}$

Déterminer l'opérateur d'inertie d'une sphère de rayon R par rapport à un repère situé en son centre



On remarque une symétrie sphérique

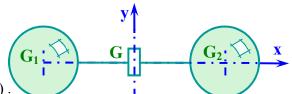
$$\begin{split} & \int_s x^2 \cdot dm = \int_s y^2 \cdot dm = \int_s z^2 \cdot dm = \frac{1}{3} \cdot I_G \\ & I_{Gx} = \int_s (y^2 + z^2) \cdot dm = \frac{2}{5} \cdot m \cdot R^2 = I_{Gy} = I_{Gz} \end{split}$$

On note que les plans de symétrie annulent les produits d'inertie
$$\mathbb{I}(G,S) = \frac{2mR^2}{5} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}_{B\theta}$$

3-5 Balancier

Le solide (S) ci-contre est constitué de deux sphères identiques de masse M et de rayon R dont les centres sont situés à une distance d de l'axe (G, \vec{v}) .

Déterminer son moment d'inertie I_{Δ} du par rapport à l'axe (G, \vec{y})



Le moment d'inertie de la première sphère par rapport à l'axe (G_1, \vec{y})

$$I_{G_1y} = \frac{2 \cdot M R^2}{5}$$

On applique Huygens pour déterminer le moment d'inertie de la première sphère par rapport à l'axe (G, \vec{y})

$$I_{Gy} = I_{G_1y} + Md^2$$

Pour l'autre sphère le résultat est le même.

On en déduit que pour l'ensemble des deux sphères $I_{Gv} = 2 \cdot (I_{Gv} + M d^2)$