C.I.2 EVALUATION DES PERFORMANCES D'UN SYSTEME ASSERVI

I STABILITE

Table des matières

1	No	otion de stabilité	3
	1.1	Stabilité – Définitions	3
	1.2	Aspect mathématique : Les pôles de la FTBF	3
	1.3	Réduction de l'ordre d'un système – pôle dominant	4
	1.4	Possibilité d'instabilité après bouclage d'un système pourtant stable	7
2	Étı	ude de la stabilité à partir de l'analyse de la FTBF	9
	2.1	Etude de la stabilité à partir des pôles de la FTBF	9
	2.2	Critère de Routh simplifié	9
	2.3 balar	Exemple de la chaine de régulation de l'inclinaison du scooter UNO III en mode ncé :	auto- 12
	2.4	Etude de la stabilité des systèmes multi-variables	12
3	Étı	ude de la stabilité à partir de critères graphiques sur la FTBO	15
	3.1	Stabilité d'un système bouclé	15
	3.2	Critère du revers dans le plan de Bode	16
	3.3	Marges de stabilité	17
	3.4 auto-	Application sur la chaine de régulation de l'inclinaison du scooter UNO III en m -balancé :	ode 18
	3.5	Amortissement et marge de phase	19
4	Ca	uses d'instabilité	20
	4.1	Les retards purs	20
	4.2	Le gain en boucle ouverte	20
	4.3	Les intégrateurs	20

Exemple de système asservi : BPG Uno Scooter Concept

Le scooter BPG Uno III est un parfait exemple de système asservi qui doit être nécessairement stable pour un bon fonctionnement. L'équilibre du système est notamment obtenu grâce à un système gyroscopique couplé à un calculateur traitant les informations et transmettant les consignes aux deux moteurs électriques équipant les deux groupes propulsion.

(<u>http://bpg-motors.com/</u>).

Uno I (Concept initial)

Uno III Gyromètre et pendule Ecart à la verticale Couple moteur Consigne de commande Groupe Propulsic Vitesse d rotation Calculateur

Codeur incrémental

On quantifie les performances de stabilité, précision et rapidité d'un système asservi, selon l'évaluation de 3 critères que sont respectivement les dépassements, l'erreur et le temps de réponse à 5%. La stabilité est une notion générale non spécifique des systèmes asservis mais elle prend cependant une grande importance dans le cas de ces systèmes, car on souhaite toujours qu'un système asservi soit stable. La stabilité est donc la performance que l'on regarde en premier et il est inutile d'analyser les autres performances si le système n'est pas stable.

1 Notion de stabilité

1.1 Stabilité – Définitions

Exemples de systèmes stables : figures 1-1 et 1-2 :

Exemple de système instable : figure 1-3.

La définition de la stabilité d'un système linéaire peut prendre deux formes équivalentes :

Un système est stable si à une entrée bornée* correspond une sortie bornée. Un système est dit stable si sa réponse libre** tend vers zéro, quand $t \rightarrow \infty$.

* L'entrée peut être une consigne ou une perturbation

** Lorsque l'entrée présente un retour à zéro (exemple un Dirac, un créneau...)

Un système réel instable oscille jusqu'à sa destruction. Ces oscillations sont dans le cas général limitées par les différentes saturations (limites des amplificateurs opérationnels, butées physiques, ...).

Ces limitations physiques font que les systèmes ne sont plus modélisables par des SLCI. Ils feront l'objet d'études spécifiques.

Nous allons développer deux types d'études, selon que l'on analyse la fonction de transfert en boucle fermée (FTBF) du système, ou bien la fonction de transfert en boucle ouverte (FTBO).

1.2 Aspect mathématique : Les pôles de la FTBF

Considérons un système asservi modélisé par une fonction de transfert en boucle fermée T(p).

Si on le soumet à une impulsion $e(t) = \delta(t) = E(p) = 1$, on obtient : S(p) = T(p)

H(p) peut s'écrire, par décomposition en éléments simples, sous la forme : T(p) = $\sum_{i=1}^{n} \frac{C_i}{(p-p_i)^{q_i}}$

où les pi sont les pôles ($p_i = a_i + j\omega_i$ pour les pôles complexes) de la fonction de transfert. La sortie sera de la forme :

$$s(t) = A_1 + \sum_{i=2}^{n_0} \frac{A_i t^{(i-1)}}{(i-1)!} + \sum_{k=1}^{n_1} B_k e^{p_k \cdot t} + \sum_{j=1}^{n_2} D_j e^{\sigma_j \cdot t} \cdot sin(\omega_j t + \varphi)$$

On constate au vu de cette expression que la réponse impulsionnelle garde une valeur finie, si les conditions suivantes sont vérifiées :

- les p_k (pôles réels) et les σ_j ; (parties réelles des pôles complexes) doivent être **négatifs** pour que les exponentielles correspondantes soient décroissantes,
- les **Ai** doivent être **tous nuls** pour que la sortie libre revienne à zéro. Ce qui revient à dire qu'il ne doit pas y avoir de pôle nul, donc pas d'intégrateur dans la FTBF.

On peut conclure de cette étude que pour qu'un système linéaire soit stable : - Il faut que les pôles de sa fonction de transfert soient - des pôles réels tous strictement négatifs - des pôles complexes à partie réelle strictement négative.

Exemple : une fonction de transfert en boucle fermée : 2 pôles nuls

- 2 poles nuls
- $l p \hat{o} le r \hat{e} e l simple p = a$
- $l p \hat{o} le r \acute{e} l double p = b$
- 2 pôles complexes conjugués simples $p = c \pm j d$

On soumet ce modèle à une entrée en Dirac $e(t) = \delta(t) = E(p) = 1$

 $S(p) \text{ peut donc s'écrire : } S(p) = H(p) \cdot E(p) = H(p) \cdot 1 = \frac{N(p)}{p^2 \cdot (p-a) \cdot (p-b)^2 \cdot ((p-c)^2 + d^2)}$

S(p) peut ensuite se décomposer : $S(p) = \frac{A_1}{p} + \frac{A_2}{p^2} + \frac{B}{p-a} + \frac{C_1}{p-b} + \frac{C_2}{(p-b)^2} + \frac{D.p+E}{(p-c)^2+d^2}$

La transformée inverse de Laplace de S(p) permet le retour temporel :

$$s(t) = \left(A_1 + A_2 \cdot t + B \cdot e^{a \cdot t} + C_1 \cdot e^{b \cdot t} + C_2 \cdot t \cdot e^{b \cdot t} + D \cdot e^{c \cdot t} \cdot \cos(d \cdot t) + \frac{D \cdot c + E}{d} \cdot e^{c \cdot t} \cdot \sin(d \cdot t)\right) \cdot u(t)$$

Pour que la sortie revienne à zéro, il ne faut pas d'intégrateur et il faut que a, b, c, négatifs. Ce qui revient bien à dire que les pôles de la partie réelle des racines est strictement négative.

Cet énoncé ne permet cependant pas de qualifier le comportement d'un système asservi. En effet, **un système très mal amorti sera stable au sens strict du terme**, mais jugé d'une stabilité insuffisante (mauvais amortissement). En d'autres termes, il nous sera nécessaire d'aller au-delà de cette définition pour **préciser la qualité de la stabilité d'un système donné**.

1.3 Réduction de l'ordre d'un système – pôle dominant.

Pour mieux en comprendre le rôle des pôles de la fonction de transfert en boucle fermée, (FTBF), on a représenté **dans le plan complexe** (fig 1-4 et 1-5) **l'allure de la réponse à l'impulsion de Dirac** selon la position des pôles de la FTBF d'un système.

- On retrouve les sorties instables déjà étudiées correspondant à des parties réelles négatives ou nulles.
- Pour les pôles à partie réelle négative, la réponse converge vers zéro et plus le pôle est éloigné de l'axe imaginaire, plus la décroissance est rapide. L'amortissement croît.
- > On observe que les racines complexes conjuguées font apparaître des oscillations.
- > On distingue les racines réelles par leur absence d'oscillation.

<u>Le cas particulier du second ordre</u>: on peut relier ces comportements à l'évolution de la pulsation propre ω_0 et du coefficient d'amortissement z.

Cas particulier 1 : Un système présentant un certain nombre de pôles complexes à partie réelle nulle est un système juste oscillant (ou système marginalement stable mais considéré instable.

Cas particulier 2 : Un système « intégrateur pur » (de FTBF= 1/p) est un système instable car une entrée en « échelon » conduit à une sortie en « rampe ».

Page 5/20 Evaluation des performances des SLCI--Stabilité

Ainsi, pour un système stable, on peut remarquer que l'effet des pôles très éloignés de l'axe imaginaire disparaît bien avant celui des pôles qui en sont plus proches, compte tenu des décroissances exponentielles très différentes. Aussi, **les pôles du système les plus proches de l'axe imaginaire sont qualifiés de pôles dominants**.

Certains des pôles de la fonction de transfert (FTBF) du système ont une **contribution prépondérante** sur le comportement du modèle :

Il s'agit **des pôles** (à partie réelle négative) **les plus proches de l'axe des imaginaires**.

Ils sont appelés **"pôles dominants"** et on peut en général simplifier l'expression du dénominateur de la fonction de transfert (FTBF) en ne conservant que les termes correspondants aux pôles dominants.

le dénominateur doit être sous forme canonique avant d'effectuer la simplification !!

Lorsqu'ils sont suffisamment éloignés des pôles dominants, **les pôles les plus** éloignés de l'axe imaginaire peuvent être négligés, ce qui permet de diminuer l'ordre de la fonction de transfert F(p) modélisant le système. On peut ainsi évaluer les performances attendues d'un système en limitant la complexité des calculs.

Dans la pratique, le choix est simple si les pôles sont suffisamment écartés les uns des autres, et beaucoup plus délicat dans le cas contraire. Dans un cas favorable, on procède comme suit : • on garde le pôle réel le plus proche de l'axe imaginaire et la paire de pôles complexes conjugués la plus proche de l'axe imaginaire ;

T2

• on garde dans tous les cas les intégrateurs, donc le terme en p^{α} .

Exemple : Soit une fonction de transfert :

$$\mathbf{F}(\mathbf{p}) = \frac{\mathbf{K}}{(1+T_1\mathbf{p}) \cdot (1+T_2\mathbf{p})} \quad \text{avec } \underline{\mathbf{T1}} <<$$

Les deux pôles de la fonction de transfert sont : $P_1 = -\frac{1}{T_1}$ et $P_2 = -\frac{1}{T_2}$ donc <u>P1 << P2</u>

La figure 1-6 présente la position des pôles P1 et P2 dans le plan complexe : **P2 est le pôle dominant.**

La réponse temporelle du système pour une entrée impulsionnelle (figure 1-7) montre que l'on peut négliger la constante de temps la plus faible (T₁) pour utiliser la forme de F(p) où le terme correspondant au pôle P₁ est supprimé : $F(p) = \frac{K}{(1 + T_2 p)}$ <u>Justification</u> : Dans l'expression de $s(t) = \frac{K}{T_2 - T_1} (e^{-t/T_2} - e^{-t/T_1})$, le terme $\frac{K}{T_2 - T_1} e^{-t/T_2}$

correspondant au pôle dominant devient prépondérant lorsque le temps croît (de même pour la réponse à l'échelon figure 1-8).

Illustration de l'influence de la suppression du pôle non dominant sur les réponses impulsionnelle et indicielle.

Lieu d'Evans :

Les logiciels de simulation sont capables de déterminer la position des pôles d'une fonction de transfert, pour différentes valeurs du gain de boucle K variable de celle-ci ; la courbe obtenue est nommée "lieu d'Evans".

Exemple : la figure 1-10 représente le lieu d'Evans du système de la figure 1-9 lorsque K varie de 1 à 500 :

Figure 1-9

On visualise alors facilement l'instabilité ($Re \ge 0$) qui apparaît avec l'augmentation du gain de boucle K.

1.4 Possibilité d'instabilité après bouclage d'un système pourtant stable

L'utilisation d'une boucle pour un SLCI, peut le déstabiliser le système. Pour illustrer le phénomène on peut comparer la réponse d'un même système, de fonction de transfert H(p), dans le cas où il est non bouclé puis dans le cas où il est bouclé.

On le sollicite avec un même signal d'entrée e(t) rectangulaire de période T et d'amplitude E₀. On considère qu'en boucle ouverte, le système étudié (bloc H(p)) entraine un déphasage de T/2du signal et l'amplifie d'une valeur K_a (>1) :

En boucle ouverte on constate que le système est stable, le signal de sortie est juste amplifié et déphasé par rapport au signal d'entrée.

PSI Cours de SII

Page 7/20

Si on boucle ce même système avec un retour unitaire et qu'il est soumis à la même entrée en créneau, H(p) est maintenant soumis à une entrée $\varepsilon(p) = S(p) - E(p)$ qui correspond à la différence entre les deux signaux d'entrée et de sortie.

Pour déterminer le signal de sortie s(t), il faut cette fois ci déterminer l'écart $\varepsilon(t)$ qui entre dans le bloc, $\frac{1}{2}$ période par $\frac{1}{2}$ période. Le tracé obtenu montre le phénomène de « pompage » ou instabilité dans laquelle la grandeur amplifiée s(t) s'ajoute au signal d'entrée qui est lui-même de nouveau amplifié. Le processus se reproduit de période en période et le signal de sortie diverge donc très rapidement...

Pour la phase 1 : l'écart $\varepsilon_1 = E_0$. Pour la phase 2 : l'écart $\varepsilon_2 = E_2 - S_2 = -E_0 - K_a$. $\varepsilon_1 = -E_0.(1 + K_a)$. Pour la phase 3 : l'écart $\varepsilon_3 = E_3 - S_3 = E_0 - K_a$. $\varepsilon_2 = E_0 - K_a$. $(-E_0.(1 + K_a)) = E_0.(1 + K_a + K_a^2)$. Pour la phase 4 : l'écart $\varepsilon_4 = E_4 - S_4 = -E_0 - K_a$. $\varepsilon_3 = -E_0 - K_a$. $(E_0.(1 + K_a + K_a^2) = -E_0.(1 + K_a + K_a^2))$.

Soit un écart qui tend en valeur absolue vers $E_0.(1 + K_a + K_a^2 + K_a^3 + ... + K_a^n)$. Le signal de sortie diverge. Il y a donc instabilité après bouclage si $K_a > 1$.

L'existence d'une boucle de retour impose donc d'étudier la stabilité des systèmes asservis :

- Soit à partir de critères analytiques sur le polynôme caractéristique de la fonction de transfert boucle fermée (FTBF) du système, ce qui nécessite d'avoir le modèle numérique de cette FTBF.
- Soit à partir de critères graphiques sur les lieux de transfert de la fonction de transfert boucle ouverte (FTBO) du système. Dans la pratique, les critères graphiques sont plutôt privilégiés par les ingénieurs car ils permettent de déterminer des marges de stabilité..

2 Étude de la stabilité à partir de l'analyse de la FTBF

2.1 Etude de la stabilité à partir des pôles de la FTBF

Le calcul de la fonction de transfert boucle fermée d'un système asservi permet de passer d'un modèle bouclé à un modèle équivalent non bouclé de fonction de transfert H(p).

La FTBF pouvant aussi se mettre sous la forme privilégiant l'écriture en pôles, il est par conséquent possible de déterminer la stabilité d'un système asservi à l'aide de la condition fondamentale.

Rappel : Un système asservi est stable si sa FTBF possède des pôles à partie réelle négative.

2.2 Critère de Routh simplifié

Bien qu'il ne soit plus au programme en CPGE, on pourra retenir le critère de Routh simplifié.

Des considérations mathématiques sur les polynômes permettent d'affirmer que : , si l'un des coefficients a_0 à a_n du polynôme du dénominateur de la fonction de transfert $H_{BF}(p)$ n'est pas strictement positif, alors l'équation caractéristique admet au moins une solution à partie réelle positive ou nulle.

Cette proposition permet d'énoncer une condition algébrique de stabilité :

Pour qu'un système asservi soit stable, il est nécessaire que les coefficients a_0 à a_n du polynôme du dénominateur de sa fonction de transfert en boucle fermée $H_{BF}(p)$ soient tous de même signe.

Nécessaire ne veut pas dire suffisant !

Cas d'un premier ou d'un deuxième ordre

Cette condition est suffisante pour un 1^{er} et un deuxième ordre :

1 ^{er} ordre	2 ^{ème} ordre
$D(p) = a_0 + a_1 \cdot p$	$D(p) = a_0 + a_1 \cdot p + a_2 \cdot p^2$
stable si les deux coefficients	stable si les trois coefficients
a ₀ et a ₁ sont de même signe.	a ₀ , a₁ et a₂sont de même signe .

Exemple : Chaine de régulation de l'inclinaison du scooter UNO III en mode auto-balancé :

La chaîne d'action permettant de réguler l'inclinaison du scooter est réalisée par un ensemble amplificateur et motoréducteur. Cet ensemble délivre un couple moteur qui permet d'incliner le châssis par rapport à la verticale.

Le modèle de comportement de ce système (amplificateur + motoréducteur + modèle dynamique du châssis \approx pendule inverse) donne une fonction de transfert qui peut s'écrire sous la forme :

$$H_{I}(p) = \frac{\psi(p)}{U(p)} = \frac{K_{I}}{\frac{1}{\omega_{I}^{2}} \cdot p^{2} - 1}$$

Avec : U(p) transformée de Laplace de la tension de commande du motoréducteur, $\psi(p)$ transformée de Laplace de l'angle d'inclinaison du scooter par rapport à la verticale, K_1 gain du système mécanique ($K_1 = 0,24$ rad/V) et ω_1 pulsation propre du système mécanique ($\omega_1 = 4,1$ rad/s).

L'écriture en pôles donne :

$$H_{I}(p) = \frac{\psi(p)}{U(p)} = \frac{K_{I}.\omega_{I}^{2}}{p^{2} - \omega_{I}^{2}} = \frac{K_{I}.\omega_{I}^{2}}{(p - \omega_{I}).(p + \omega_{I})} = \frac{K_{I}.\omega_{I}^{2}}{(p - 4, I).(p + 4, I)}$$

 $H_1(p)$ possède 2 pôles réels dont un est positif \rightarrow le modèle dynamique du scooter sans asservissement est donc instable. On pouvait s'y attendre puisque le centre de gravité du scooter est au dessus de l'axe de rotation des roues (pendule inversé !).

Cas d'un ordre supérieur à deux :

 3 ^{eme} ordre	4 ^{ème} ordre et plus
$D(p) = a_0 + a_1 \cdot p + a_2 \cdot p^2 + a_3 \cdot p^3$	A l'aide de la calculatrice,
stable si les quatre coefficients a_0 , a_1 , a_2 et	chercher les racines et voir le signe
a_3 sont de même signe <u>et si</u> $a_1 \times a_2 > a_0 \times a_3$.	des parties réelles des pôles.

Application : Commenter la stabilité des trois modèles ci-dessous :

FTBF :
$$T_1(p) = \frac{1}{p^4 + p^3 + 3p^2 + p + 1}$$

FTBF :
$$T_2(p) = \frac{1}{p^4 + p^3 + 5p^2 + 4p + 4}$$

FTBO :
$$H_2(p) = \frac{10}{p \cdot (p+1) \cdot (10p+1)}$$

PSI Cours de SII

Page 11/20 Evaluation des performances des SLCI--Stabilité

2.3 Exemple de la chaine de régulation de l'inclinaison du scooter UNO III en mode auto-balancé :

Afin de stabiliser l'inclinaison du scooter, la grandeur de commande, u(t) est en fait élaborée à partir des mesures de $\dot{\psi}(t)$ (réalisée par le gyromètre) et de $\psi(t)$ (réalisée par combinaison de la mesure du gyromètre et du pendule).

Pour étudier le comportement du système il faut d'abord déterminer la FTBF du système :

$$H_{2}(p) = \frac{\psi(p)}{W(p)} = \frac{\frac{H_{1}(p)}{1 + p.K_{v}.H_{1}(p)}}{1 + \frac{K_{p}.H_{1}(p)}{1 + p.K_{v}.H_{1}(p)}} = \frac{H_{1}(p)}{1 + p.K_{v}.H_{1}(p) + K_{p}.H_{1}(p)} = \frac{\frac{K_{1}.\omega_{1}^{2}}{p^{2} - \omega_{1}^{2}}}{1 + p.K_{v}.\frac{K_{1}.\omega_{1}^{2}}{p^{2} - \omega_{1}^{2}} + K_{p}.\frac{K_{1}.\omega_{1}^{2}}{p^{2} - \omega_{1}^{2}}} = \frac{K_{1}.\omega_{1}^{2}}{p^{2} - \omega_{1}^{2} + p.K_{v}.K_{1}.\omega_{1}^{2} + K_{p}.K_{1}.\omega_{1}^{2}}$$

Premier examen du critère de Routh :

Tous les coefficients du polynôme caractéristique de la FTBF doivent être positifs et non nuls. $D(p) = p^2 + p.K_V.K_1.\omega_1^2 + K_p.K_1.\omega_1^2 - \omega_1^2 \text{ donc } K_v.K_1 > 0 \text{ et } K_p.K_1 - 1 > 0.$

Ici le 1^{er} examen suffit puisque le polynôme caractéristique est du 2nd degré donc au final pour que le système soit stable il faut $K_v > 0$ et $K_p > \frac{1}{K}$.

2.4 Etude de la stabilité des systèmes multi-variables

Exemple :

Dans le cas d'un système subissant une perturbation P(p), si l'on étudie l'évolution de la sortie s(t),

d'une part par rapport à l'entrée e(t),

d'autre part par rapport à la perturbation p(t),

Dans le cas de systèmes multi-variables, on superpose deux modes :

- un 1^{er} mode pour lequel l'entrée E₂(p) est considérée comme nulle et
- un 2nd mode pour lequel l'entrée P(p) est considérée comme nulle.
- Mode à entrée P(p)=0

 $H_1(p)$ est appelée la fonction de transfert en poursuite.

• Mode à entrée E(p)=0

PSI Cours de SII

Page 12/20

Evaluation des performances des SLCI--Stabilité

Le théorème de superposition permet d'obtenir la fonction de transfert en boucle fermée du système multi-variables :

en
$$S(p) = H_1(p) \cdot E(p) + H_2(p) \cdot P(p) = \frac{A(p) \cdot B(p)}{1 + A(p) \cdot B(p) \cdot C(p)} \cdot E(p) + \frac{-B(p)}{1 + A(p) \cdot B(p) \cdot C(p)} \cdot P(p)$$

On observe que ces deux études se font avec la même FTBO ;

On montre alors que les pôles de la FTBF S(p) / E(p), et ceux de la fonction de transfert S(p) / P(p) sont les mêmes.

Exemple de la chaine de régulation de l'inclinaison du scooter UNO III en mode auto-balancé :

Après manipulation du schéma bloc on obtient le système équivalent suivant :

La superposition permet d'obtenir la fonction de transfert boucle fermée du système multivariables :

$$\begin{split} \psi(p) &= H_2(p).W(p) - \frac{1}{H_1(p)}.H_2(p).\alpha(p) \\ \psi(p) &= \frac{H_1(p)}{1 + K_p.H_1(p) + p.K_v.H_1(p)}.W(p) - \frac{1}{H_1(p)}.\frac{H_1(p)}{1 + K_p.H_1(p) + p.K_v.H_1(p)}.\alpha(p) \\ Soit \ \psi(p) &= \frac{H_1(p)}{1 + K_p.H_1(p) + p.K_v.H_1(p)}.W(p) - \frac{1}{1 + K_p.H_1(p) + p.K_v.H_1(p)}.\alpha(p) \end{split}$$

Le polynôme caractéristique de la FTBF D(p) est le même pour la fonction de transfert en poursuite $\psi(p) / W(p)$ et la fonction de transfert en régulation $\psi(p) / \alpha(p)$. L'étude précédente de la stabilité sans la perturbation reste donc toujours valable et suffisante.

3 Étude de la stabilité à partir de critères graphiques sur la FTBO

Dans la pratique, l'étude de la stabilité **des systèmes bouclés** se fait plutôt **graphiquement dans le domaine fréquentiel** à partir de la **FTBO.**

Le fait que les critères soient fréquentiels ne doit pas conduire à penser que l'instabilité ne peut se produire que si l'entrée est sinusoïdale. En effet, tout signal d'entrée (un échelon par exemple) peut être décomposé en série de Fourier et donc être considéré comme une somme de signaux sinusoïdaux couvrant un large spectre de pulsations.

Exemple du créneau

3.1 Stabilité d'un système bouclé

Le système bouclé ci-contre a pour FTBF dans sa forme isochrone :

$$\mathbf{T}(\mathbf{j}\boldsymbol{\omega}) = \frac{\mathbf{A}(\mathbf{j}\boldsymbol{\omega})}{\mathbf{1} + \mathbf{A}(\mathbf{j}\boldsymbol{\omega}) \cdot \mathbf{B}(\mathbf{j}\boldsymbol{\omega})}$$

Sa stabilité est conditionnée par le signe de la partie réelle des pôles de $T(j\omega)$.

Il faut donc étudier les solutions de $1 + A(j\omega) \cdot B(j\omega) = 0$.

Rappel,

- La résolution d'une telle équation pose rapidement de sérieux problèmes de calculs. Elle n'est envisagée qu'avec une assistance informatique.

- Dans le cas où on s'intéresse à la stabilité stricte, seul le signe de la partie réelle des pôles nous intéresse. On peut utiliser pour cela : Le critère de Routh. Le résultat est donc binaire et ne fournit en conséquence aucune indication sur la qualité de la stabilité.

Critère graphique:

On sait que $T(j\omega)$ est un complexe dont le module $\left| \frac{A(j\omega)}{1 + A(j\omega) \cdot B(j\omega)} \right|$ est égal au gain de la

FTBF. On voit bien apparaître une instabilité lorsque le dénominateur s'annule.

En effet, le gain de la FTBF devient infini et cela implique que $A(j\omega) \cdot B(j\omega)$, le complexe représentant la FTBO doit être différent de -1

Par conséquent, une condition nécessaire de stabilité peut s'énoncer sous la forme suivante :

Il en résulte que la FTBO ne doit pas avoir :

- un gain $G_{BO}(\omega) = |\mathbf{A}(\mathbf{j}\omega) \cdot \mathbf{B}(\mathbf{j}\omega)| = 1$

- en même temps qu'une phase $\varphi_{BO}(\omega) = -\pi$

- Ce troisième moyen repose sur le critère de Nyquist, et dans la pratique, sur sa version simplifiée qu'est le critère du revers. Outre la vérification de la stabilité ou non-stabilité d'un système, il permet de montrer graphiquement la qualité de la stabilité et les paramètres influents. Notre programme se limite au critère du revers.

3.2 Critère du revers dans le plan de Bode

On veut montrer comment à partir de la fonction de transfert en boucle ouverte (FTBO), il est possible d'étudier la stabilité d'un système asservi, c'est-à-dire, du système en boucle fermée.

Enoncé du critère :

Traduction graphique :

Autre formulation :

Le système sera stable en boucle fermée si à la pulsation ω-_{180°}, telle que arg[FTBO (jω)] = -180°, le gain en boucle ouverte 20log | FTBO(jω) | est inférieur à 0dB.

3.3 Marges de stabilité.

Avoir établi qu'un système est stable ne suffit pas. On décrit plus précisément le comportement stable ou instable des systèmes en définissant des marges qui garantissent un fonctionnement satisfaisant.

Les critères retenus reposent la position du LTBO par rapport au point critique suivant deux directions : l'amplitude et la phase.

Définitions :

Marge de gain :

MG = -20.log $|A(j\omega_{-180}).B(j\omega_{-180})|$, ω_{-180} tel que Arg $[A(j\omega).B(j\omega)] = -180^{\circ}$

Une marge de gain de 6dB permet une latitude d'un facteur 2 sur le gain en boucle ouverte. La valeur retenue est généralement comprise entre 6 et 15dB. On retiendra 10dB.

Marge de phase :

```
\mathbf{M}\boldsymbol{\varphi} = \mathbf{180} + \mathbf{Arg} \left[ \mathbf{A} \left( \mathbf{j}\boldsymbol{\omega}_{0dB} \right) \mathbf{B} \left( \mathbf{j}\boldsymbol{\omega}_{0dB} \right) \right], \, \boldsymbol{\omega}_{0dB} \text{.tel que } \left| \mathbf{A} (\mathbf{j}\boldsymbol{\omega}) \mathbf{B} (\mathbf{j}\boldsymbol{\omega}) \right| = 1
```

ω_{0dB}.est appelée pulsation de coupure à 0dB

La valeur pratique retenue pour la marge de phase est comprise entre 45 et 60°.

Marge de gain et de phase dans le plan de Bode

3.4 Application sur la chaine de régulation de l'inclinaison du scooter UNO III en mode auto-balancé :

La consigne de la régulation de l'inclinaison du châssis $\psi(t)$ par rapport à la verticale est notée $\psi_c(t)$.

PSI Cours de SII

Page 18/20

Evaluation des performances des SLCI--Stabilité

3.5 Amortissement et marge de phase

L'amortissement de la réponse en BF peut être estimée à l'aide de l'abaque de Black. Pour des systèmes qui se comportent en boucle fermée comme un second ordre oscillant,

l'amortissement est directement lié au coef. de surtension : $Q = \frac{1}{2z\sqrt{1-z^2}}$.

Une seconde approche consiste à utiliser la marge de phase.

Nous avons vu que la marge de phase permet de quantifier la "distance" entre le point critique de stabilité et le LTBO à la pulsation pour laquelle le gain en BO vaut 1. L'utilisation de cette grandeur pour régler l'amortissement repose sur la relation suivante :

Pour un système du second ordre oscillant dont le <u>gain en boucle ouverte est</u> <u>"grand</u>", le coefficient d'amortissement en boucle fermée peut être approximé par la marge de phase (exprimé en degré) et divisé par 100.

Pour un système du second ordre, le dépassement indiciel dépend exclusivement du coef. d'amortissement. $D_1\%^{-1}$

$$d = 10\% \implies z_{BF} = 0,6 \implies M\phi \approx 60^{\circ}$$
$$d = 20\% \implies z_{BF} = 0,45 \implies M\phi \approx 45^{\circ}$$

Cette relation permet pour les systèmes dont le comportement en BF est comparable à celui d'un second ordre d'estimer la marge de phase à régler pour obtenir un amortissement donné en boucle fermée.

4 Causes d'instabilité

4.1 Les retards purs

Lorsqu'un système modélisé par une fonction H(p) subit un retard pur noté r, la fonction de transfert est multipliée par e^{-rp} .

Le nouveau modèle s'écrit alors :

 $T(p) = H(p) \cdot e^{-rp}$

C qui donne pour la pour la réponse

harmonique : $T(j \cdot \omega) = H(j \cdot \omega) \cdot e^{-r \cdot j \cdot \omega}$

On note que $e^{-r \cdot j \cdot \omega}$ a

- un module constant et égal à 1 soit 20log(G) = 0dB

- et un argument :
$$\varphi = -r \cdot \omega$$
.

$$e^{-T.j\omega}$$

Exemple :
$$H(j\omega) = \frac{1}{1 + T.j\omega}$$

Il s'agit d'un retard pur associé à un système du 1er ordre. Seule la courbe de phase du système est affectée par le retard pur.

La présence d'un retard pur (il y a en dans tous les systèmes) dans la FTBO pourra entraîner l'instabilité du système en BF.

4.2 Le gain en boucle ouverte

Pour les systèmes d'ordre supérieur à 2 l'augmentation du gain en boucle ouverte K_{BO} peut conduire à un risque d'instabilité.

Tracés d'une même FTBO dans le plan de Bode pour deux valeurs de K_{BO}.

4.3 Les intégrateurs

La présence d'intégrateur(s) dans la FTBO apporte un déphasage de - 90°, ce qui rapproche le lieu de transfert du point critique, donc tend à déstabiliser le système.